3.601 \(\int \cot ^6(c+d x) \csc ^4(c+d x) (a+a \sin (c+d x))^2 \, dx\)

Optimal. Leaf size=152 \[ -\frac{a^2 \cot ^9(c+d x)}{9 d}-\frac{2 a^2 \cot ^7(c+d x)}{7 d}+\frac{5 a^2 \tanh ^{-1}(\cos (c+d x))}{64 d}-\frac{a^2 \cot ^5(c+d x) \csc ^3(c+d x)}{4 d}+\frac{5 a^2 \cot ^3(c+d x) \csc ^3(c+d x)}{24 d}-\frac{5 a^2 \cot (c+d x) \csc ^3(c+d x)}{32 d}+\frac{5 a^2 \cot (c+d x) \csc (c+d x)}{64 d} \]

[Out]

(5*a^2*ArcTanh[Cos[c + d*x]])/(64*d) - (2*a^2*Cot[c + d*x]^7)/(7*d) - (a^2*Cot[c + d*x]^9)/(9*d) + (5*a^2*Cot[
c + d*x]*Csc[c + d*x])/(64*d) - (5*a^2*Cot[c + d*x]*Csc[c + d*x]^3)/(32*d) + (5*a^2*Cot[c + d*x]^3*Csc[c + d*x
]^3)/(24*d) - (a^2*Cot[c + d*x]^5*Csc[c + d*x]^3)/(4*d)

________________________________________________________________________________________

Rubi [A]  time = 0.285175, antiderivative size = 152, normalized size of antiderivative = 1., number of steps used = 12, number of rules used = 7, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.241, Rules used = {2873, 2607, 30, 2611, 3768, 3770, 14} \[ -\frac{a^2 \cot ^9(c+d x)}{9 d}-\frac{2 a^2 \cot ^7(c+d x)}{7 d}+\frac{5 a^2 \tanh ^{-1}(\cos (c+d x))}{64 d}-\frac{a^2 \cot ^5(c+d x) \csc ^3(c+d x)}{4 d}+\frac{5 a^2 \cot ^3(c+d x) \csc ^3(c+d x)}{24 d}-\frac{5 a^2 \cot (c+d x) \csc ^3(c+d x)}{32 d}+\frac{5 a^2 \cot (c+d x) \csc (c+d x)}{64 d} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]^6*Csc[c + d*x]^4*(a + a*Sin[c + d*x])^2,x]

[Out]

(5*a^2*ArcTanh[Cos[c + d*x]])/(64*d) - (2*a^2*Cot[c + d*x]^7)/(7*d) - (a^2*Cot[c + d*x]^9)/(9*d) + (5*a^2*Cot[
c + d*x]*Csc[c + d*x])/(64*d) - (5*a^2*Cot[c + d*x]*Csc[c + d*x]^3)/(32*d) + (5*a^2*Cot[c + d*x]^3*Csc[c + d*x
]^3)/(24*d) - (a^2*Cot[c + d*x]^5*Csc[c + d*x]^3)/(4*d)

Rule 2873

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*
(x_)])^(m_), x_Symbol] :> Int[ExpandTrig[(g*cos[e + f*x])^p, (d*sin[e + f*x])^n*(a + b*sin[e + f*x])^m, x], x]
 /; FreeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2 - b^2, 0] && IGtQ[m, 0]

Rule 2607

Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[1/f, Subst[Int[(b*x)
^n*(1 + x^2)^(m/2 - 1), x], x, Tan[e + f*x]], x] /; FreeQ[{b, e, f, n}, x] && IntegerQ[m/2] &&  !(IntegerQ[(n
- 1)/2] && LtQ[0, n, m - 1])

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 2611

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*(a*Sec[e
+ f*x])^m*(b*Tan[e + f*x])^(n - 1))/(f*(m + n - 1)), x] - Dist[(b^2*(n - 1))/(m + n - 1), Int[(a*Sec[e + f*x])
^m*(b*Tan[e + f*x])^(n - 2), x], x] /; FreeQ[{a, b, e, f, m}, x] && GtQ[n, 1] && NeQ[m + n - 1, 0] && Integers
Q[2*m, 2*n]

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rubi steps

\begin{align*} \int \cot ^6(c+d x) \csc ^4(c+d x) (a+a \sin (c+d x))^2 \, dx &=\int \left (a^2 \cot ^6(c+d x) \csc ^2(c+d x)+2 a^2 \cot ^6(c+d x) \csc ^3(c+d x)+a^2 \cot ^6(c+d x) \csc ^4(c+d x)\right ) \, dx\\ &=a^2 \int \cot ^6(c+d x) \csc ^2(c+d x) \, dx+a^2 \int \cot ^6(c+d x) \csc ^4(c+d x) \, dx+\left (2 a^2\right ) \int \cot ^6(c+d x) \csc ^3(c+d x) \, dx\\ &=-\frac{a^2 \cot ^5(c+d x) \csc ^3(c+d x)}{4 d}-\frac{1}{4} \left (5 a^2\right ) \int \cot ^4(c+d x) \csc ^3(c+d x) \, dx+\frac{a^2 \operatorname{Subst}\left (\int x^6 \, dx,x,-\cot (c+d x)\right )}{d}+\frac{a^2 \operatorname{Subst}\left (\int x^6 \left (1+x^2\right ) \, dx,x,-\cot (c+d x)\right )}{d}\\ &=-\frac{a^2 \cot ^7(c+d x)}{7 d}+\frac{5 a^2 \cot ^3(c+d x) \csc ^3(c+d x)}{24 d}-\frac{a^2 \cot ^5(c+d x) \csc ^3(c+d x)}{4 d}+\frac{1}{8} \left (5 a^2\right ) \int \cot ^2(c+d x) \csc ^3(c+d x) \, dx+\frac{a^2 \operatorname{Subst}\left (\int \left (x^6+x^8\right ) \, dx,x,-\cot (c+d x)\right )}{d}\\ &=-\frac{2 a^2 \cot ^7(c+d x)}{7 d}-\frac{a^2 \cot ^9(c+d x)}{9 d}-\frac{5 a^2 \cot (c+d x) \csc ^3(c+d x)}{32 d}+\frac{5 a^2 \cot ^3(c+d x) \csc ^3(c+d x)}{24 d}-\frac{a^2 \cot ^5(c+d x) \csc ^3(c+d x)}{4 d}-\frac{1}{32} \left (5 a^2\right ) \int \csc ^3(c+d x) \, dx\\ &=-\frac{2 a^2 \cot ^7(c+d x)}{7 d}-\frac{a^2 \cot ^9(c+d x)}{9 d}+\frac{5 a^2 \cot (c+d x) \csc (c+d x)}{64 d}-\frac{5 a^2 \cot (c+d x) \csc ^3(c+d x)}{32 d}+\frac{5 a^2 \cot ^3(c+d x) \csc ^3(c+d x)}{24 d}-\frac{a^2 \cot ^5(c+d x) \csc ^3(c+d x)}{4 d}-\frac{1}{64} \left (5 a^2\right ) \int \csc (c+d x) \, dx\\ &=\frac{5 a^2 \tanh ^{-1}(\cos (c+d x))}{64 d}-\frac{2 a^2 \cot ^7(c+d x)}{7 d}-\frac{a^2 \cot ^9(c+d x)}{9 d}+\frac{5 a^2 \cot (c+d x) \csc (c+d x)}{64 d}-\frac{5 a^2 \cot (c+d x) \csc ^3(c+d x)}{32 d}+\frac{5 a^2 \cot ^3(c+d x) \csc ^3(c+d x)}{24 d}-\frac{a^2 \cot ^5(c+d x) \csc ^3(c+d x)}{4 d}\\ \end{align*}

Mathematica [B]  time = 1.42304, size = 313, normalized size = 2.06 \[ -\frac{a^2 \csc ^9(c+d x) \left (36540 \sin (2 (c+d x))+20916 \sin (4 (c+d x))+16044 \sin (6 (c+d x))+630 \sin (8 (c+d x))+72576 \cos (c+d x)+37632 \cos (3 (c+d x))+6912 \cos (5 (c+d x))-1728 \cos (7 (c+d x))-704 \cos (9 (c+d x))+39690 \sin (c+d x) \log \left (\sin \left (\frac{1}{2} (c+d x)\right )\right )-26460 \sin (3 (c+d x)) \log \left (\sin \left (\frac{1}{2} (c+d x)\right )\right )+11340 \sin (5 (c+d x)) \log \left (\sin \left (\frac{1}{2} (c+d x)\right )\right )-2835 \sin (7 (c+d x)) \log \left (\sin \left (\frac{1}{2} (c+d x)\right )\right )+315 \sin (9 (c+d x)) \log \left (\sin \left (\frac{1}{2} (c+d x)\right )\right )-39690 \sin (c+d x) \log \left (\cos \left (\frac{1}{2} (c+d x)\right )\right )+26460 \sin (3 (c+d x)) \log \left (\cos \left (\frac{1}{2} (c+d x)\right )\right )-11340 \sin (5 (c+d x)) \log \left (\cos \left (\frac{1}{2} (c+d x)\right )\right )+2835 \sin (7 (c+d x)) \log \left (\cos \left (\frac{1}{2} (c+d x)\right )\right )-315 \sin (9 (c+d x)) \log \left (\cos \left (\frac{1}{2} (c+d x)\right )\right )\right )}{1032192 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]^6*Csc[c + d*x]^4*(a + a*Sin[c + d*x])^2,x]

[Out]

-(a^2*Csc[c + d*x]^9*(72576*Cos[c + d*x] + 37632*Cos[3*(c + d*x)] + 6912*Cos[5*(c + d*x)] - 1728*Cos[7*(c + d*
x)] - 704*Cos[9*(c + d*x)] - 39690*Log[Cos[(c + d*x)/2]]*Sin[c + d*x] + 39690*Log[Sin[(c + d*x)/2]]*Sin[c + d*
x] + 36540*Sin[2*(c + d*x)] + 26460*Log[Cos[(c + d*x)/2]]*Sin[3*(c + d*x)] - 26460*Log[Sin[(c + d*x)/2]]*Sin[3
*(c + d*x)] + 20916*Sin[4*(c + d*x)] - 11340*Log[Cos[(c + d*x)/2]]*Sin[5*(c + d*x)] + 11340*Log[Sin[(c + d*x)/
2]]*Sin[5*(c + d*x)] + 16044*Sin[6*(c + d*x)] + 2835*Log[Cos[(c + d*x)/2]]*Sin[7*(c + d*x)] - 2835*Log[Sin[(c
+ d*x)/2]]*Sin[7*(c + d*x)] + 630*Sin[8*(c + d*x)] - 315*Log[Cos[(c + d*x)/2]]*Sin[9*(c + d*x)] + 315*Log[Sin[
(c + d*x)/2]]*Sin[9*(c + d*x)]))/(1032192*d)

________________________________________________________________________________________

Maple [A]  time = 0.09, size = 216, normalized size = 1.4 \begin{align*} -{\frac{11\,{a}^{2} \left ( \cos \left ( dx+c \right ) \right ) ^{7}}{63\,d \left ( \sin \left ( dx+c \right ) \right ) ^{7}}}-{\frac{{a}^{2} \left ( \cos \left ( dx+c \right ) \right ) ^{7}}{4\,d \left ( \sin \left ( dx+c \right ) \right ) ^{8}}}-{\frac{{a}^{2} \left ( \cos \left ( dx+c \right ) \right ) ^{7}}{24\,d \left ( \sin \left ( dx+c \right ) \right ) ^{6}}}+{\frac{{a}^{2} \left ( \cos \left ( dx+c \right ) \right ) ^{7}}{96\,d \left ( \sin \left ( dx+c \right ) \right ) ^{4}}}-{\frac{{a}^{2} \left ( \cos \left ( dx+c \right ) \right ) ^{7}}{64\,d \left ( \sin \left ( dx+c \right ) \right ) ^{2}}}-{\frac{{a}^{2} \left ( \cos \left ( dx+c \right ) \right ) ^{5}}{64\,d}}-{\frac{5\,{a}^{2} \left ( \cos \left ( dx+c \right ) \right ) ^{3}}{192\,d}}-{\frac{5\,{a}^{2}\cos \left ( dx+c \right ) }{64\,d}}-{\frac{5\,{a}^{2}\ln \left ( \csc \left ( dx+c \right ) -\cot \left ( dx+c \right ) \right ) }{64\,d}}-{\frac{{a}^{2} \left ( \cos \left ( dx+c \right ) \right ) ^{7}}{9\,d \left ( \sin \left ( dx+c \right ) \right ) ^{9}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^6*csc(d*x+c)^10*(a+a*sin(d*x+c))^2,x)

[Out]

-11/63/d*a^2/sin(d*x+c)^7*cos(d*x+c)^7-1/4/d*a^2/sin(d*x+c)^8*cos(d*x+c)^7-1/24/d*a^2/sin(d*x+c)^6*cos(d*x+c)^
7+1/96/d*a^2/sin(d*x+c)^4*cos(d*x+c)^7-1/64/d*a^2/sin(d*x+c)^2*cos(d*x+c)^7-1/64*a^2*cos(d*x+c)^5/d-5/192*a^2*
cos(d*x+c)^3/d-5/64*a^2*cos(d*x+c)/d-5/64/d*a^2*ln(csc(d*x+c)-cot(d*x+c))-1/9/d*a^2/sin(d*x+c)^9*cos(d*x+c)^7

________________________________________________________________________________________

Maxima [A]  time = 1.02776, size = 209, normalized size = 1.38 \begin{align*} -\frac{21 \, a^{2}{\left (\frac{2 \,{\left (15 \, \cos \left (d x + c\right )^{7} + 73 \, \cos \left (d x + c\right )^{5} - 55 \, \cos \left (d x + c\right )^{3} + 15 \, \cos \left (d x + c\right )\right )}}{\cos \left (d x + c\right )^{8} - 4 \, \cos \left (d x + c\right )^{6} + 6 \, \cos \left (d x + c\right )^{4} - 4 \, \cos \left (d x + c\right )^{2} + 1} - 15 \, \log \left (\cos \left (d x + c\right ) + 1\right ) + 15 \, \log \left (\cos \left (d x + c\right ) - 1\right )\right )} + \frac{1152 \, a^{2}}{\tan \left (d x + c\right )^{7}} + \frac{128 \,{\left (9 \, \tan \left (d x + c\right )^{2} + 7\right )} a^{2}}{\tan \left (d x + c\right )^{9}}}{8064 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^6*csc(d*x+c)^10*(a+a*sin(d*x+c))^2,x, algorithm="maxima")

[Out]

-1/8064*(21*a^2*(2*(15*cos(d*x + c)^7 + 73*cos(d*x + c)^5 - 55*cos(d*x + c)^3 + 15*cos(d*x + c))/(cos(d*x + c)
^8 - 4*cos(d*x + c)^6 + 6*cos(d*x + c)^4 - 4*cos(d*x + c)^2 + 1) - 15*log(cos(d*x + c) + 1) + 15*log(cos(d*x +
 c) - 1)) + 1152*a^2/tan(d*x + c)^7 + 128*(9*tan(d*x + c)^2 + 7)*a^2/tan(d*x + c)^9)/d

________________________________________________________________________________________

Fricas [B]  time = 1.21343, size = 756, normalized size = 4.97 \begin{align*} \frac{1408 \, a^{2} \cos \left (d x + c\right )^{9} - 2304 \, a^{2} \cos \left (d x + c\right )^{7} + 315 \,{\left (a^{2} \cos \left (d x + c\right )^{8} - 4 \, a^{2} \cos \left (d x + c\right )^{6} + 6 \, a^{2} \cos \left (d x + c\right )^{4} - 4 \, a^{2} \cos \left (d x + c\right )^{2} + a^{2}\right )} \log \left (\frac{1}{2} \, \cos \left (d x + c\right ) + \frac{1}{2}\right ) \sin \left (d x + c\right ) - 315 \,{\left (a^{2} \cos \left (d x + c\right )^{8} - 4 \, a^{2} \cos \left (d x + c\right )^{6} + 6 \, a^{2} \cos \left (d x + c\right )^{4} - 4 \, a^{2} \cos \left (d x + c\right )^{2} + a^{2}\right )} \log \left (-\frac{1}{2} \, \cos \left (d x + c\right ) + \frac{1}{2}\right ) \sin \left (d x + c\right ) - 42 \,{\left (15 \, a^{2} \cos \left (d x + c\right )^{7} + 73 \, a^{2} \cos \left (d x + c\right )^{5} - 55 \, a^{2} \cos \left (d x + c\right )^{3} + 15 \, a^{2} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{8064 \,{\left (d \cos \left (d x + c\right )^{8} - 4 \, d \cos \left (d x + c\right )^{6} + 6 \, d \cos \left (d x + c\right )^{4} - 4 \, d \cos \left (d x + c\right )^{2} + d\right )} \sin \left (d x + c\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^6*csc(d*x+c)^10*(a+a*sin(d*x+c))^2,x, algorithm="fricas")

[Out]

1/8064*(1408*a^2*cos(d*x + c)^9 - 2304*a^2*cos(d*x + c)^7 + 315*(a^2*cos(d*x + c)^8 - 4*a^2*cos(d*x + c)^6 + 6
*a^2*cos(d*x + c)^4 - 4*a^2*cos(d*x + c)^2 + a^2)*log(1/2*cos(d*x + c) + 1/2)*sin(d*x + c) - 315*(a^2*cos(d*x
+ c)^8 - 4*a^2*cos(d*x + c)^6 + 6*a^2*cos(d*x + c)^4 - 4*a^2*cos(d*x + c)^2 + a^2)*log(-1/2*cos(d*x + c) + 1/2
)*sin(d*x + c) - 42*(15*a^2*cos(d*x + c)^7 + 73*a^2*cos(d*x + c)^5 - 55*a^2*cos(d*x + c)^3 + 15*a^2*cos(d*x +
c))*sin(d*x + c))/((d*cos(d*x + c)^8 - 4*d*cos(d*x + c)^6 + 6*d*cos(d*x + c)^4 - 4*d*cos(d*x + c)^2 + d)*sin(d
*x + c))

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**6*csc(d*x+c)**10*(a+a*sin(d*x+c))**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 1.24185, size = 437, normalized size = 2.88 \begin{align*} \frac{14 \, a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{9} + 63 \, a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{8} + 18 \, a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{7} - 336 \, a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{6} - 504 \, a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} + 504 \, a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{4} + 1848 \, a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 1008 \, a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 5040 \, a^{2} \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) \right |}\right ) - 3276 \, a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + \frac{14258 \, a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{9} + 3276 \, a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{8} - 1008 \, a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{7} - 1848 \, a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{6} - 504 \, a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} + 504 \, a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{4} + 336 \, a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 18 \, a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 63 \, a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 14 \, a^{2}}{\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{9}}}{64512 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^6*csc(d*x+c)^10*(a+a*sin(d*x+c))^2,x, algorithm="giac")

[Out]

1/64512*(14*a^2*tan(1/2*d*x + 1/2*c)^9 + 63*a^2*tan(1/2*d*x + 1/2*c)^8 + 18*a^2*tan(1/2*d*x + 1/2*c)^7 - 336*a
^2*tan(1/2*d*x + 1/2*c)^6 - 504*a^2*tan(1/2*d*x + 1/2*c)^5 + 504*a^2*tan(1/2*d*x + 1/2*c)^4 + 1848*a^2*tan(1/2
*d*x + 1/2*c)^3 + 1008*a^2*tan(1/2*d*x + 1/2*c)^2 - 5040*a^2*log(abs(tan(1/2*d*x + 1/2*c))) - 3276*a^2*tan(1/2
*d*x + 1/2*c) + (14258*a^2*tan(1/2*d*x + 1/2*c)^9 + 3276*a^2*tan(1/2*d*x + 1/2*c)^8 - 1008*a^2*tan(1/2*d*x + 1
/2*c)^7 - 1848*a^2*tan(1/2*d*x + 1/2*c)^6 - 504*a^2*tan(1/2*d*x + 1/2*c)^5 + 504*a^2*tan(1/2*d*x + 1/2*c)^4 +
336*a^2*tan(1/2*d*x + 1/2*c)^3 - 18*a^2*tan(1/2*d*x + 1/2*c)^2 - 63*a^2*tan(1/2*d*x + 1/2*c) - 14*a^2)/tan(1/2
*d*x + 1/2*c)^9)/d